Mostrando las entradas con la etiqueta Matemáticas. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Matemáticas. Mostrar todas las entradas

11 de junio de 2008

First week in Montreal

I'm in Montreal for the first week of the SMS-2008: Summer School Symmetries and Integrability of Difference Equations at the Centre de Recherches Mathematiques at Universite de Montreal. It has been a tough but exciting one. However, by now one of the best things is that during the same week there is a conference or Celebratation of Raoul Bott's Legacy in Mathematics. I had the chance to attend lectures given by Michael Atiyah, Edward Witten and Peter Lax. It was great to see some of the genius performing alive.
So far I have not seen much of the city but yesterday went to a pub and got the chance to watch game 3 of the NBA finals: Lakers won against Celtics.

5 de junio de 2008

The right way

There is only one way to do mathematics: the right way. Contrary to literature, history or poetry, where one is allowed to create or define its own metaphors, mathematics goes along a road which should eventually lead to an expected objective.

2 de junio de 2008

Valium

Hoy es mi tercer día en Valium. Los efectos han sido positivos. Al fin he logrado dejar de hacerme pendejo por un rato y sentarme ante el escritorio a trabajar. He terminado, favorablemente, un primer borrador del artículo sobre mapeos tropicales integrables en el plano, sus simetrías y las fotos de las curvas de nivel no compactas que generan. Ahora he de darle a las bifurcaciones de los mapeos con simetrías para tener algo que presentar en SIDE8.
Sí, voy a Montreal y lo confieso, el viaje no me tiene del todo exitado. Lo que me desanima es el viaje: Melbourne-Sydney-Vancouver-Montreal. Unas 30 horas, yo creo.
Pero al fin podré comer un poutin como dios manda...

30 de mayo de 2008

Play it for real (in a discrete way)

We all like to play. Or at least we liked to play at a certain stage of our life. Is there a better game than the one in which you create your own universe with only a few basic building blocks? Does this universe have to exist out there in order to call it real? Is the description of an object the object itself? Does this created or idealised universe approximates somehow to the real one, the one most people is used to, or the one in which we think we live?

Plenty of games and plenty of time to play. As for me, I have decided to continue playing for a longer time. I’ve chosen mathematics, a game with simple rules and lots of possible creations. The possibilities are so extent that, once one decides to get serious, which means pursuing a career as a researcher, one has to chose a narrower path, with a fewer rules that could lead to the possibility of new creations or universes which no one else has envisioned yet.

However, the game is not an isolated one. It has been played for thousands of years and it’s being shared amongst people from different times. That is some of the magic of the game. Imagine you could gather your all-time favourite soccer players and not only watch a match but participate in it. That is how we play in mathematics: a bit here and a bit from then and voilà, the match is won.

The sport which I’ve decided to play is called “discrete integrable systems” and, after a few words on it, I’m sure you will agree with me that it is one of the most natural choices with respect to the times we live. By discrete we refer to the possibility of counting one by one, opposed to the continuous. Imagine you are at your local market. Buying 5 apples is a discrete buy, whereas buying a kilo of sugar is a continuous one. But this is not the main attraction to study the discrete world. Nowadays, with more and more computers in our life and the need to communicate with them, there is a need to translate a possible command in terms or ones and zeros, a discrete language. Being a bit more daring, one could think of time as discrete since, isn’t it the moments and not the whole life which constitute our memories? Even space might be thought as discrete, since all matter can be decomposed in terms of elementary, quantified particles.

As for integrable systems, they go back to the 18th century with the theory of the elliptic orbits of the planets. An integrable system is one which is well behaved, that is, which can be predicted to a certain degree and be solved if necessary. One of the main characteristics of integrable systems is that they possess conserved quantities or symmetries, as we sometimes like to think of them. In a few words, conserved quantities give us a way to trust in the world we live in. We know that gravity is constant on earth and that we go around the Sun and will not escape from the orbit the Earth has been following for millions of years. That gives some peace of mind, doesn’t it?

But I was telling you how the game is shared amongst mathematicians from different times. A hundred years passed and integrable systems where the object of attention again. Now with a different object of study: solitons, which are waves that travel without loosing its shape. Just like a tsunami or a nerve impulse. Nowadays, the applications of integrable systems are numerous. An interesting one is used in the implementation of particle accelerators. The reason for it is that when shooting a particle one would like it to hit a certain target, or at least don’t dissipate or run unpredictably. Hopefully some of this particle shooting will give some answers as of how the universe was created. And integrable systems will be a part of this search.

23 de septiembre de 2006

Aliento

He caido en la cuenta de las diferencias de aliento literario. Para tocar la trompeta es necesario inflar y contraer los cachetes mientras que, para generar los sonidos del didjeridoo es preciso crear reverberaciones con los labios dentro de la rama hueca de eucalipto con cera de abeja en la boquilla. Así también en la literatura -en particular- y en la vida -en general. Octavio Paz explicó que, debido a su falta de paciencia y perseverancia en el tema, jamás se animó a escribir una novela. Para él, el instante lo era todo. Por ello se especializó en la idea, en extenderla y darle vueltas. Idea que fluye y, de repente, es otra. Así es el ensayo y la poesía -poemas evolucionados.
Hay otros que necesitan pasar días y días inmersos en la historia que cuentan, en la catársis de ser y vivir la historia del otro, del combatiente que es uno mismo porque
para conocerse a uno mismo es necesario mirarse desde el otro. Bruce Lee decía que, cuando tiene un enfrentamiento, el contrincante no es el otro sino uno mismo. Uno pelea para vencerse a sí mismo. Esta es la novela, invento de la burguesía, hija de la locura de don Quijote. Si hay otros géneros no son más que oscilaciones entre estos dos. Digamos, por ejemplo, la dramaturgia. Ésta puede virar desde el extremo poético de la metáfora que no llega jamás a concretarse en la realidad a la protesta social que no es más que un minucioso análisis del uno hombre en una sociedad.
Creo que también tiene que ver la edad con el objeto de escritura. Para escribir una novela hace falta haber vivido unas cuantas. La poesía, por otro lado, ha sido asociada a la juventud, a la percepción del mundo según la experiencia propia, sin necesidad de vicios o recovecos.
En ciencia, las matemáticas serían como la poesía y la física como la novela.

20 de septiembre de 2006

Sumas

Las matemáticas se reducen a unas simples sumas. Todo se puede ver como la suma de algo mas algo. El problema viene cuando los objetos que uno intenta sumar viven en dimensiones infinitas o son de una complejidad dificil de abstraer. Ah, y encontrar los resultados no es tan fácil. A veces basta con tratar de establecer el patrón de crecimiento, la ruta por donde se llega al infinito y a su posible barrera, si es que la tiene. A eso se reducen las matemáticas de este siglo. Ejemplos? Contrapuntos?

18 de septiembre de 2006

4 de septiembre de 2006

Mersenne

Parece que han descubierto el Mersenne número 44

23 de agosto de 2006

Mate o filosofia

Las matemáticas, a diferencia de la filosofía, consiste en una intensa busqueda de resultados nuevos. La filosofía, por su parte, busca el bagaje para darle vueltas y mas vueltas.